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C-TOTALLY REAL SUBMANIFOLDS

SEIICHI YAMAGUCHI, MASAHIRO KON & TOSHIHIKO IKAWA

0. Introduction

C. S. Houh [5], S. T. Yau [10], B. Y. Chen and K. Ogiue [3] have studied
totally real submanifolds (anti-holomorphic submanifolds) in an almost Hermi-
tian manifold or a Kdhlerian manifold of constant holomorphic sectional cur-
vature, and obtained many interesting results.

On the other hand, in the recent paper [8] we have investigated the C-totally
real submanifolds in a Sasakian manifold with constant g-holomorphic sectional
curvature,

In § 1 we recall some basic formulas for submanifolds in Riemannian mani-
folds. In § 2 we shall state the fundamental property of C-totally real sub-
manifolds in Sasakian manifolds. In the last section, we investigate C-totally
real minimal submanifolds M™” in a constant ¢-holomorphic sectional curvature
and show the pinching theorem for the length of the second fundamental form
by using the method of J. Simons [7].

1. Preliminaries

Let M be a Riemannian manifold of dimension # + p, and M an n-dimen-
sional submanifold of M. Let ¢ , > be the metric tensor field on M as well as
the metric induced on M. We denote by 7 the covariant differentiation in M,
and by F the covariant differentiation in M determined by the induced metric
on M. Let £(M) (resp. £(M)) be the Lie algebra of vector fields on M (resp.
M), and ¥1(M) the set of all vector fields normal to M.

The Gauss-Weingarten formulas are given by
FyY =7,Y + B(X,Y),
FyN= —A¥X)+ DyN, X,YeZXM),NeX(M),
where D is the connection in the normal bundle. Both 4 and B are called the
second fundamental form of M, and satisfy (4¥(X), Y> = {B(X,Y), N).

The curvature tensors associated with 7, 7 and D are defined by

. R(Xay):[ﬁXaVY]“’?[x,Y]a
(1.2) R(X,Y) = [VX, VY] - V[.r,Y: >
RJ'(X, Y) = [DXa DY] - D[X,YJ .
Communicated by K. Yano, June 13, 1974.

(1.1)
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If the curvature tensor R+ of the normal connection D vanishes identically,
then the normal connection D is said to be flat.
The Gauss equation is given by
(R(Z, V)X, W) =(R(Z,Y)X, W)y — (B(Y,X),B(Z,W)>

1.3
-3 + <B(X,2),B(Y, W)}, W,X,Y,ZeX(M) .

Moreover we have the following Ricci equation :

(R(Z,Y)N)* = RYZ,Y)N — B(A¥(Y),2) + B(4%(2),Y),

(1.4)
Y, ZecX(M), Ne 2t(M) ,

where (R(Z, Y)N)L is the normal projection of R(Z,Y)N.
Now we define the covariant derivative of the second fundamental form B
as follows :

(1.5) Vx(B)Y,Z) = Dx(B(Y,Z)) — BWyY,Z) — B(Y,VxZ)

for any vector fields X, Y, Z ¢ X(M). For the second fundamental form A4 we
define its covariant derivative by setting
Vx(AY(Y) = Vx(A¥(Y)) — AP (Y) — AY(P,Y) ,

(1.6)
X, YeX(M), NeXt(M) .

Clearly we see <7 3(B)(Y,Z),N> = (Fz(A*(Y), Z>.

The mean curvature vector H is defined by H = (1 /) trace B. A submanifold
M is said to be minimal if H = O identically. Moreover, M is called a totally
geodesic submanifold in M if its second fundamental form B is identically zero.

2. C-totally real submanifolds

Let M be a Sasakian manifold with structure tensors (¢,&,75,<{,>). Then the
structure tensors satisfy the following equations :

Vet =¢X, Fzp)Y =79(NX — <X, V>, X, YecX(M).

Sasakian manifold is odd dimensional and orientable. The curvature tensor

A
R(X,Y) (X,Y e ¥(M)) of a Sasakian manifold M satisfies

2.1 ={Z,WXY, Xy — {Z, f)(l_’, W} -+ <¢Z, )?><¢W, I_’>
—LgY, XXW, Z)
for any vector fields W,X,Y,Z < ¥(M). When the curvature tensor of
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a (2n + 1)-dimensional Sasakian manifold M has the following form
ARX,Z = (k + Y, 25X — <X, Z2>7} + (k — D{n(X)(2D)Y
(2.2) — I(DX + (X, Z3(V)g — ¥, Zyp(X)¢
+{9Y, Z>¢X + {$Z, X »¢Y — 20X, Y ¢Z} ,

then M is called a space of constant ¢-holomorphic sectional curvature. In
such a space, k is necessarily constant if n > 1.

It is well known that an odd dimensional sphere is Sasakian and a Sasakian
manifold is a contact manifold.

Let us recall the definition of a C-totally real submanifold in a Sasakian
manifold. Let M be a (2n + 1)-dimensional contact manifold with contact form
7. The Pfaffian equation 7 = 0 determines in M a 2n-dimensional distribution,
which is called the contact distribution [6]. A submanifold M in M is said to
be an integral submanifold of the contact distribution if and only if every tangent
vector of M belongs to the contact distribution. We shall call the integral sub-
manifold M of the contact distribution of a Sasakian manifold a C-totally real
submanifold. Then we have known dim M < n, and the following theorem
has been proved [8]:

Theorem A. Let M be an m (m < n) dimensional C-totally real submani-
fold in a Sasakian manifold M*"*' with structure tensors (¢, &, 7, »). Then
we have the following.

(1) The second fundamental form of & direction is identically zero.

(ii) If X e X(M), then ¢X e X-(M).

(iii) If m = n, then A**(Y) = A*(X), X, Y ¢ £(M).

Making use of Theorem A, (1.3) and (2.2) we can easily prove

Proposition 2.1. Let M be an m (< n)-dimensional C-totally real submani-
fold of a 2n + 1)-dimensional Sasakian manifold M**** with constant ¢-holo-
morphic sectional curvature k. If M is totally geodesic, then M is of constant
curvature L(k + 3).

In the following, we deal with an r-dimensional C-totally real submanifold
M of a @2n + 1)-dimensional Sasakian manifold Af***!. We shall show

Theorem 2.2. Let M be an n-dimensional C-totally real submanifold of a
Sasakian manifold M***. Then the normal connection is flat if and only if the
submanifold M is of constant curvature 1.

Proof. Using (1.4) and taking account of Theorem A (iii) we can obtain

(R(Z,Y)$X, ¢W> = (RNUZ, Y)$X,¢W> — (B(X,Y), BW,Z)>
+ <BX,Z),B(W,Y)> . W.X,Y,ZecX(M),
which together with (1.3) implies
R(Z,Y)6X — ¢R(Z, V)X + ¢R(Z,Y)X = RH(Z,Y)¢X .

Consequently, regarding to (2.1) we get
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RIZ, X, WY —Z,WXY,X> +(Z,XXY, Wy =(RYZ,Y)$X,oW> ,
which completes the proof because of
(R(Z,Y)N,& = p(ZXY,Ny — p(YXX,Ny =0

Theorem 2.3. Let M be an n-dimensional C-totally real submanifold in
M™+' If the second fundamental form of M is parallel, then M is totally

geodesic.
Proof. Let X,Y,Z e X¥(M). By (1.5) we have

(BX,Y),$Z) = —<{F,(BYX,Y), &> =0,

which shows that M is totally geodesic.

3. C-totally real minimal submanifolds

In this section we assume that M?**'(k) is a (2n + 1)-dimensional Sasakian
manifold with constant ¢-holomorphic sectional curvature k£, and M is an n-
dimensional C-totally real submanifold of M***'(k). Then the Simons’ type
formula for the second fundamental form A is given by

V’A= —AcAd—AsA + Hn+ Dk +3n—1}4,

where the operators 4 and A are defined by

~ n+1
A=t4:4, A= 5 (add9adA-.
a=n+1
Now we take a frame E,, - - -, E, for Tp(M) and a frame ¢E,, - - -, E,, &
for Tp(M)+, and for simplicity write A for A*%:. As A4° =0, we have
4 = 32, (ad A")ad A¥. By the method of Simons we can easily derive the
inequality :

(Aod,d> + (Ao, 4> < (2 _ %)HAH‘ .

If M is compact, then

A4, T4y — 4]}

3.1 <[ = 1)ar = Lo+ 00+ D)ar

Next we shall prove that the left hand side of (3.1) is nonnegative at each
point of M. Owing to (1.6) we have
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FATAy = 5 Pl (ED, T (A ED)

i,5,k=1

3 P AFED, Vs (AFED)

Z,7=1

= V(A (ER), Ve (AT ED) + |4

%7,k

which implies (FA4,FA> — [A|F > 0. Hence

(3.2) o< | {(2= )1 — o+ Dk + B}jar
¥ n 4
Therefore we obtain
Theorem 3.1. Let M*Y(k) be a 2n + 1)-dimensional Sasakian manifold

with constant ¢-holomorphic sectional curvature k, and M a compact n-dimen-
sional C-totally real minimal submanifold of M**'(k). If

A2 < in(rn + DK + 3)/2n — 1),
or equivalently
o> tnf(n — 2)(k + 3)/2n — 1),

then M is totally geodesic, where p is the scalar curvature of M.

Theorem 3.2. Let M be an n-dimensional C-totally real minimal submani-
fold of M*+\(k). If the sectional curvature of M is constant, say C, then either
C = 1(k + 3) (i.e., M is totally geodesic) or C < 0.

Proof. We calculate (40 A, A> and {4 -4, A> in the following ways. In
the first place, by virtue of (1.3) and (2.2) we have

(3.3) (4o /I, A> = 3, (trace A¥"A7)* = trace (Z (Ai")2>2
. 1,7 i

=@ - DGE+3) -Of4lF.
On the other hand, using (1.3) we get

(3.4) —Gk +3) — O 4] = 3 trace 4M4°4¥A" — (Ao 4, 4> .

In the next place, from the definition of A it follows that

(3.5) (Aod,A> =23 trace (A")(A*)* — 27 trace A A" A A" .
*,t k¢

Therefore by virtue of (3.3), (3.4) and (3.5) we obtain

(3.6) (AoA,A> = 20K + 3) — C) |41,
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which means
(3.7) FA,FA> — ||4|f = n(n* — DCC — Lk + 3.

This completes our assertion.

The following result is an immediate consequence of (3.6).

Theorem 3.3. Let M be an n-dimensional C-totally real minimal submani-
fold in M** (k). If the sectional curvature of M is constant, and {FA,VA>
= A | holds, then M is either totally geodesic or flat.
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